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POINT EXPLOSION IN A NON-HOMOGENEOUS ATMOSPHERE

Kh. S. Kestenboym, F. D. Turetskaya, and L. A. Chudov

ABSTRACT. A strong point explosion is examined in an ex-
ponential atmosphere without consideration of the real pro-
perties of the air. A numerical solution of the point
equation of gas dynamics is given and the computation is
extended to later phases.

An approximate law for the propagation'of a shock wave front in the /25%

case of an atmosphere whose density depends exponentially on altitude was
obtained inv[l] for the simplest model of a powerful explosion. This law
was further specified in [2], where the dependence of pressure, density and .
thevspeed of the particles in the front on time and the angular coordinate
were also determined. An approximate calculaﬁibnf§f the two-dimensionality
of the phenomenon was conducted in [3]. The authors proceeded on the basis
of an assumption of local radiality of flow; as a resuit,qﬁhe probiem was
converted to one-dimensionality with parametric dependence of the solution

on the angular coordinate.

A relatively late stage of a plane explosion was examined in [4, 5].
The asymptotic self-modeling solutions that were obtained were applied to a
point explosion [6]. Similar asymptotic considerations were made in [7, 8].
The first attempt to investigate the problem numerically in a point formula-

tion was made in 1955 in [9]; see also [14].

In the present paper, the problem is considered in the same initial
formulation as in the preceding papers; a strong point éxplosioh is examined
in an exponential atmosphere without consideration of the real properties
of the air. Unlike previous reports, however, where the motion was con-
sidered either by approximate methods or for early moments in time, when
the non-homogeneity was not very powerfully manife§ted, the present paper
contains a numerical solution of the point equations of gas dynamics and the

computation is extended to later phases. The results of the calculation are

*Numbers in the margin indicate'pagination in the foreign text.



compared with data in [2].

1. Statement of tho Problem. Let us consider a non-viscous, complete
gas, whose thermal conductivity and radiation are not taken into account.
The density po' and pressure po' are exponentially dependent on the altitude
z', reckoned from the point PO’ where at the initial moment ¢ = 0 the energy

EO is liberated.
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Here A is the scale of non-homogeneity [6]. In the explosion, a Shock
wave is produced which separates the region of flow of the excited gas from
the unexcited portion. The‘phenomenon possesses axial symmetry, and all of
its characteristics depend on the cylindrical coordinates z', r', and the
time £'. The‘motion is viewed in the half plane I(»' = 0), bounded by the
axis of symmetry. Let p' represent the pressure, p' the density, and u' and
v' the horizontal and vertical components of the speed, respectively. The

dimensionless variables are introduced according to the formulas

t 2’ r

S AN AT G N
(poc’A3 [ EYI2 ? A »P 1eoo’ 1.2
p:___ﬁ; u= u! '__ EO‘ ( ' )

EJA3 "'m’ ‘—'&T

where the dimensionless factor o, depends [10, 11] on the coefficient of the

adiabatic curve y, assumed constant.
The equations describing the motion assume the form /26
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The boundary conditions for the shock wave will be those of Rankine and

Gugonio:




~where N is the rate of propagation of the shock wave, and o is the angle of
the normal to the front with axis r. The following conditions of symmetry

are imposed on the axis » = 0:
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"The explosion is assumed to be strong, and the parameters Ag and 4

in (1.3) and (1.4), representing the influence of the force of gravity and

counterpressure, are assumed to be equal to zero. The solution of the

problem obtained in this manner depends on a single dimensionless parameter,

the index of the adiabatic curve y.

2. Method of Solution. 1In the half plane I a central area GO is
marked off (referred to in future as c.a.), with a boundary Go(t) containing

the point of the explosion P The ‘boundary GO(t) is selected in the course

of solving the problem in sugh a way that the pressure over the entire c.a.’
may be considered constant. The physical basis for this assumption is. the
high speedlof propagation producedfin the vicinity of the point PO.
For each moment, the pressure in the c.a. is determined with the aid
of the ehergy balance; the density and velocity that are required for calcu-
lating the kinetic energy are extrapolated in the c.a. from the region of
differential calculation Gl, bounded by the curve'GO(t), the front of the

shock wave Gl(t) and two segments of the axis of symmetry (Figure 1).

With thé_aid of a special system of coordinates reprééented schemafically
in Figure 1, area Gl is transformed into a fixed'rectangie in the plane of
the calculated variables (£, ¢). The motion equation (1.3), transformed to
the variables (r, E,.ﬁ), isvapprbximated with the aid of a clear two-level
syétem first used by G. S. Roslyakov and L. A. Chudov in 1962 to solve the

pfoblem of supersonic flow around a blunt body [12].

To calculate the shock wave front under the conditions of Rankine and
Gugonio, an equation was formulated for the total speed of the particles at
the front. Different approximations of the conditions of symmetry (1.5) were

used in the areas of the boundary corresponding“to segments of the axis of

symmetry.



Smoothing was used to damp the /27
'z : oscillations arising in the presence

of large gradients.

The energy balance was used as

a control.

3. Results of the Calculations.

The method described was tested on

various one-dimensional problems,

particularly the solution of the
problem of a point explosion in a

“homogeneous atmosphere with con-

o sideration of counterpressure. Good
ffgure i. agreémeﬁf?with the data in [13] was
| ‘obfained. - .

The solution of the problem described above was obféined on a grid con-
sisting of 320 node points (16 rays and 20 nodes on each ray). The calcula-
tion was made at y = 1.2. For the initial conditions in this éaiculation’
we used the self-modeling solution of L. I. Sedov [10, 11] (the initial
'radius of the front was 0.054). ,Calculafions were continued until T = 13.4.
The actual non—homogeneity of the>prob1em was clearly apparent; some values
varied over enormous ranges. For example, the pressure in-the upper part of
‘the front decreased in comparison to the initial value by six or seven orders
of maghitude. The spatial non—homogeneity was also great: at Tt =.13.4 the
pressure in the lower part of the front was greater than the pressure in the
upper part of the front by a factor of 50. The development of non-homogeneity
was accompanied by a noticeéble contraction of the c.a. in the relative
coordinate; the influence of non-homogeneity appears to penetrate the central
zone. The pressufe in the c.a. up to v = 0.2 goincides with the corresponding
- pressure in the self-modeling solution, then becomes smaller: at T = 1;39,
the difference 6p0 is 9%, at v = 4.4, 6p0.= 26%, etc. Evidently, in the
strong stage there is a phenomenon of "suction' of parxticles out of the

central area. A sharper drop of pressure in the c.a. in comparison with



{10; 11} evidently makes the c.a. float like an area of constant pressure
observed with an increase of non-homogeneity. The shock wave, moving upWard
at T ~ 6.2 reaches the minimal value of its speed; dispersal of the upper

part of the front then begins.

As the spatial non-homogeneity increases, so do the errors in approxi-
mation caused by a rather coarse grid, which show up as the growth of the
relative imbalance of emergy S6E; thus, 6F = 7, 20, 30% for tv = 1.39, 4.4,

and 6.1, respectively.

The results related to large values of T have only a qualitative value.

Figure 2 shows for t = 6.1 the distributions of the functions p and p on
coordinate z along the lower and upper rays of the grid. At this moment

the shock wave front travels upward a distance which is more than two factors
greater than the corresponding distance downward;ﬁfLarge gradients of the
solution in the lower part and a complete transformation of -the density
profile as well as the main pressure in the upper parf of . the excited area
are noted. In addition, there is a qualltatlve correspondence of these

profiles to the self-modeling solution [5].

k. Comparison with Data in
[2]. The positions of the shock

wave front on the basis of the

[ : rhi 000; P ’Mfm] results of this work are shown in
‘ 1 : R . Figure 3 for t = 3.05 and 6.1
l (solid curves); the data from [2]
/ aovs\o2 | l[eois\ 4o are represented by dots. The-
// Y ‘ maximum relative deviation (in the
T r—— } . .
L 200410 radial direction) occurs at the
2.7 a1 75 / 0.010\20
, s lower point of the axis of symmetry
%
| v !(/jb/ amﬂg and does not exceed 7%.
'y 0.5 N 13
4 D . As expected, the gas dynamic
Figure 2. parameters in the front which have

a certain degree of sense in the
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conditional (integral) sense in [2], have much worse ‘agreement with the
results of our calculations. Figure 4 shows the pressure distribution in
the front as a function of the angular coordinate ¢ at T = 1.39 and v = 4.4.
The solid curves are plotted on the basis of our results, and points repre-

sent the results from [2].
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Figure 3. Figure 4.
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